平特心水报图
新網絡營銷基礎與實踐

你的位置:首頁 >網絡營銷 >蒙特卡羅方法

蒙特卡羅方法

蒙特卡羅方法概述
蒙特卡羅方法又稱統計模擬法、隨機抽樣技術,是一種隨機模擬方法,以概率和統計理論方法為基礎的一種計算方法,是使用隨機數(或更常見的偽隨機數)來解決很多計算問題的方法。將所求解的問題同一定的概率模型相聯系,用電子計算機實現統計模擬或抽樣,以獲得問題的近似解。為象征性地表明這一方法的概率統計特征,故借用賭城蒙特卡羅命名。

蒙特卡羅方法的提出
蒙特卡羅方法于20世紀40年代美國在第二次世界大戰中研制原子彈的“曼哈頓計劃”計劃的成員S.M.烏拉姆和J.馮·諾伊曼首先提出。數學家馮·諾伊曼用馳名世界的賭城—摩納哥的Monte Carlo—來命名這種方法,為它蒙上了一層神秘色彩。在這之前,蒙特卡羅方法就已經存在。1777年,法國Buffon提出用投針實驗的方法求圓周率∏。這被認為是蒙特卡羅方法的起源。

蒙特卡羅方法的基本思想
Monte Carlo方法的基本思想很早以前就被人們所發現和利用。早在17世紀,人們就知道用事件發生的“頻率”來決定事件的“概率”。19世紀人們用投針試驗的方法來決定圓周率π。本世紀40年代電子計算機的出現,特別是近年來高速電子計算機的出現,使得用數學方法在計算機上大量、快速地模擬這樣的試驗成為可能。

考慮平面上的一個邊長為1的正方形及其內部的一個形狀不規則的“圖形”,如何求出這個“圖形”的面積呢?Monte Carlo方法是這樣一種“隨機化”的方法:向該正方形“隨機地”投擲N個點,有M個點落于“圖形”內,則該“圖形”的面積近似為M/N。 可用民意測驗來作一個不嚴格的比喻。民意測驗的人不是征詢每一個登記選民的意見,而是通過對選民進行小規模的抽樣調查來確定可能的優勝者。其基本思想是一樣的。

科技計算中的問題比這要復雜得多。比如金融衍生產品(期權、期貨、掉期等)的定價及交易風險估算,問題的維數(即變量的個數)可能高達數百甚至數千。對這類問題,難度隨維數的增加呈指數增長,這就是所謂的“維數的災難”(Curse of Dimensionality),傳統的數值方法難以對付(即使使用速度最快的計算機)。Monte Carlo方法能很好地用來對付維數的災難,因為該方法的計算復雜性不再依賴于維數。以前那些本來是無法計算的問題現在也能夠計算量。為提高方法的效率,科學家們提出了許多所謂的“方差縮減”技巧。

另一類形式與Monte Carlo方法相似,但理論基礎不同的方法—“擬蒙特卡羅方法”(Quasi-Monte Carlo方法)—近年來也獲得迅速發展。我國數學家華羅庚、王元提出的“華—王”方法即是其中的一例。這種方法的基本思想是“用確定性的超均勻分布序列(數學上稱為Low Discrepancy Sequences)代替Monte Carlo方法中的隨機數序列。對某些問題該方法的實際速度一般可比Monte Carlo方法提出高數百倍,并可計算精確度。

蒙特卡羅方法的基本原理
由概率定義知,某事件的概率可以用大量試驗中該事件發生的頻率來估算,當樣本容量足夠大時,可以認為該事件的發生頻率即為其概率。因此,可以先對影響其可靠度的隨機變量進行大量的隨機抽樣,然后把這些抽樣值一組一組地代入功能函數式,確定結構是否失效,最后從中求得結構的失效概率。蒙特卡羅法正是基于此思路進行分析的。

設有統計獨立的隨機變量Xi(i=1,2,3,…,k),其對應的概率密度函數分別為fx1,fx2,…,fxk,功能函數式為Z=g(x1,x2,…,xk)。

首先根據各隨機變量的相應分布,產生N組隨機數x1,x2,…,xk值,計算功能函數值 Zi=g(x1,x2,…,xk)(i=1,2,…,N),若其中有L組隨機數對應的功能函數值Zi≤0,則當N→∞時,根據伯努利大數定理及正態隨機變量的特性有:結構失效概率,可靠指標。

從蒙特卡羅方法的思路可看出,該方法回避了結構可靠度分析中的數學困難,不管狀態函數是否非線性、隨機變量是否非正態,只要模擬的次數足夠多,就可得到一個比較精確的失效概率和可靠度指標。特別在巖土體分析中,變異系數往往較大,與JC法計算的可靠指標相比,結果更為精確,并且由于思路簡單易于編制程序。

蒙特卡羅方法在數學中的應用
通常蒙特·卡羅方法通過構造符合一定規則的隨機數來解決數學上的各種問題。對于那些由于計算過于復雜而難以得到解析解或者根本沒有解析解的問題,蒙特·卡羅方法是一種有效的求出數值解的方法。一般蒙特·卡羅方法在數學中最常見的應用就是蒙特·卡羅積分。

蒙特卡羅方法的應用領域
蒙特卡羅方法在金融工程學,宏觀經濟學,生物醫學,計算物理學(如粒子輸運計算、量子熱力學計算、空氣動力學計算)等領域應用廣泛。

蒙特卡羅方法的工作過程
在解決實際問題的時候應用蒙特·卡羅方法主要有兩部分工作:

1. 用蒙特·卡羅方法模擬某一過程時,需要產生各種概率分布的隨機變量。

2. 用統計方法把模型的數字特征估計出來,從而得到實際問題的數值解。

基于蒙特卡羅模擬的風險分析,對于工程實際應用具有較強的參考價值。隨機模擬5 000 次,如果僅靠人的大腦進行計算,這在現實世界中是不可能的,但考慮到系統決策支持功能, 算法設計為由使用者自己設計方案, 采用人機交互, 這樣可以發揮使用者的經驗判斷;系統實現模擬運算——系統對每一個設定的投資項目期投資、壽命期、殘值以及各年的收入、支出,以及應付稅金的稅率、項目的資本成本等隨機變量及他們的概率密度函數,通過蒙特卡羅模擬方法,得出了項目在不同概率發生的情況下凈現值模擬計算結果。為人們解決不確定性項目的決策提供了簡單的方法,節約了人們的工作量和時間。但是利用蒙特卡羅模型分析問題時,收集數據是非常關鍵的。

網絡營銷詞典內容均由網友提供,僅供參考。

平特心水报图 湖北十一选五预测 贵州体彩十一选五 代缴公积金公司赚钱吗 吉林时时票助手 pk10冠军选号心得技术 乐游舟山麻将 在上海开一家加盟混沌店赚钱吗 广东快乐10分计划软件 11选五开奖 AG鬼马小丑现金游戏